zouyu
2025-09-26 3fbbfcc8f509c352c58dc8a126220b49b72ed5a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
package com.xindao.ocr.smartjavaai.model.plate;
 
import ai.djl.MalformedModelException;
import ai.djl.engine.Engine;
import ai.djl.inference.Predictor;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ModelNotFoundException;
import ai.djl.repository.zoo.ModelZoo;
import ai.djl.repository.zoo.ZooModel;
import cn.smartjavaai.common.entity.R;
import cn.smartjavaai.common.pool.PredictorFactory;
import cn.smartjavaai.common.utils.Base64ImageUtils;
import cn.smartjavaai.common.utils.FileUtils;
import cn.smartjavaai.common.utils.ImageUtils;
import cn.smartjavaai.common.utils.OpenCVUtils;
import com.xindao.ocr.smartjavaai.config.PlateDetModelConfig;
import com.xindao.ocr.smartjavaai.entity.PlateInfo;
import com.xindao.ocr.smartjavaai.exception.OcrException;
import com.xindao.ocr.smartjavaai.model.plate.criteria.PlateDetCriterialFactory;
import com.xindao.ocr.smartjavaai.utils.OcrUtils;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.pool2.impl.GenericObjectPool;
import org.opencv.core.Mat;
 
import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.Objects;
 
/**
 * Yolov5 车牌检测模型
 * @author dwj
 * @date 2025/7/23
 */
@Slf4j
public class Yolov5PlateDetModel implements PlateDetModel{
 
    private GenericObjectPool<Predictor<Image, DetectedObjects>> detPredictorPool;
 
    private ZooModel<Image, DetectedObjects> detectionModel;
 
    private PlateDetModelConfig config;
 
    @Override
    public void loadModel(PlateDetModelConfig config) {
        if(StringUtils.isBlank(config.getModelPath())){
            throw new OcrException("modelPath is null");
        }
        this.config = config;
        //初始化 检测Criteria
        Criteria<Image, DetectedObjects> detCriteria = PlateDetCriterialFactory.createCriteria(config);
        try{
            detectionModel = ModelZoo.loadModel(detCriteria);
            // 创建池子:每个线程独享 Predictor
            this.detPredictorPool = new GenericObjectPool<>(new PredictorFactory<>(detectionModel));
            int predictorPoolSize = config.getPredictorPoolSize();
            if(config.getPredictorPoolSize() <= 0){
                predictorPoolSize = Runtime.getRuntime().availableProcessors(); // 默认等于CPU核心数
            }
            detPredictorPool.setMaxTotal(predictorPoolSize);
            log.debug("当前设备: " + detectionModel.getNDManager().getDevice());
            log.debug("当前引擎: " + Engine.getInstance().getEngineName());
            log.debug("模型推理器线程池最大数量: " + predictorPoolSize);
        } catch (IOException | ModelNotFoundException | MalformedModelException e) {
            throw new OcrException("检测模型加载失败", e);
        }
    }
 
    @Override
    public R<List<PlateInfo>> detect(String imagePath) {
        if(!FileUtils.isFileExists(imagePath)){
            return R.fail(R.Status.FILE_NOT_FOUND);
        }
        Image img = null;
        try {
            img = ImageFactory.getInstance().fromFile(Paths.get(imagePath));
        } catch (IOException e) {
            throw new OcrException("无效的图片", e);
        }
        DetectedObjects detectedObjects = detect(img);
        if (Objects.isNull(detectedObjects) || detectedObjects.getNumberOfObjects() == 0){
            return R.fail(R.Status.NO_OBJECT_DETECTED);
        }
        List<PlateInfo> plateInfoList = OcrUtils.convertToPlateInfo(detectedObjects, img);
        ((Mat)img.getWrappedImage()).release();
        return R.ok(plateInfoList);
    }
 
    @Override
    public R<List<PlateInfo>> detectBase64(String base64Image) {
        if(StringUtils.isBlank(base64Image)){
            return R.fail(R.Status.INVALID_IMAGE);
        }
        byte[] imageData = Base64ImageUtils.base64ToImage(base64Image);
        return detect(imageData);
    }
 
    @Override
    public R<List<PlateInfo>> detect(BufferedImage image) {
        if(!ImageUtils.isImageValid(image)){
            return R.fail(R.Status.INVALID_IMAGE);
        }
        Image img = ImageFactory.getInstance().fromImage(OpenCVUtils.image2Mat(image));
        DetectedObjects detectedObjects = detect(img);
        if (Objects.isNull(detectedObjects) || detectedObjects.getNumberOfObjects() == 0){
            return R.fail(R.Status.NO_OBJECT_DETECTED);
        }
        List<PlateInfo> plateInfoList = OcrUtils.convertToPlateInfo(detectedObjects, img);
        ((Mat)img.getWrappedImage()).release();
        return R.ok(plateInfoList);
    }
 
    @Override
    public R<List<PlateInfo>> detect(byte[] imageData) {
        if(Objects.isNull(imageData)){
            return R.fail(R.Status.INVALID_IMAGE);
        }
        return detect(new ByteArrayInputStream(imageData));
    }
 
    @Override
    public DetectedObjects detect(Image image) {
        Predictor<Image, DetectedObjects> predictor = null;
        try {
            predictor = detPredictorPool.borrowObject();
            return predictor.predict(image);
        } catch (Exception e) {
            throw new OcrException("车牌检测错误", e);
        }finally {
            if (predictor != null) {
                try {
                    detPredictorPool.returnObject(predictor); //归还
                } catch (Exception e) {
                    log.warn("归还Predictor失败", e);
                    try {
                        predictor.close(); // 归还失败才销毁
                    } catch (Exception ex) {
                        log.error("关闭Predictor失败", ex);
                    }
                }
            }
        }
    }
 
    @Override
    public R<List<PlateInfo>> detect(InputStream inputStream) {
        if(Objects.isNull(inputStream)){
            return R.fail(R.Status.INVALID_IMAGE);
        }
        try {
            Image img = ImageFactory.getInstance().fromInputStream(inputStream);
            DetectedObjects detection = detect(img);
            List<PlateInfo> plateInfoList = OcrUtils.convertToPlateInfo(detection, img);
            ((Mat)img.getWrappedImage()).release();
            return R.ok(plateInfoList);
        } catch (IOException e) {
            throw new OcrException("无效图片输入流", e);
        }
    }
 
    @Override
    public R<Void> detectAndDraw(String imagePath, String outputPath) {
        if(!FileUtils.isFileExists(imagePath)){
            return R.fail(R.Status.FILE_NOT_FOUND);
        }
        try {
            Image img = ImageFactory.getInstance().fromFile(Paths.get(imagePath));
            DetectedObjects detectedObjects = detect(img);
            if(Objects.isNull(detectedObjects) || detectedObjects.getNumberOfObjects() == 0){
                return R.fail(R.Status.NO_FACE_DETECTED);
            }
            img.drawBoundingBoxes(detectedObjects);
            Path output = Paths.get(outputPath);
            log.debug("Saving to {}", output.toAbsolutePath().toString());
            img.save(Files.newOutputStream(output), "png");
            return R.ok();
        } catch (IOException e) {
            throw new OcrException(e);
        }
    }
 
    @Override
    public R<BufferedImage> detectAndDraw(BufferedImage sourceImage) {
        if(!ImageUtils.isImageValid(sourceImage)){
            return R.fail(R.Status.INVALID_IMAGE);
        }
        Image img = ImageFactory.getInstance().fromImage(OpenCVUtils.image2Mat(sourceImage));
        DetectedObjects detectedObjects = detect(img);
        if(Objects.isNull(detectedObjects) || detectedObjects.getNumberOfObjects() == 0){
            return R.fail(R.Status.NO_FACE_DETECTED);
        }
        img.drawBoundingBoxes(detectedObjects);
        try {
            ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
            // 调用 save 方法将 Image 写入字节流
            img.save(outputStream, "png");
            // 将字节流转换为 BufferedImage
            byte[] imageBytes = outputStream.toByteArray();
            return R.ok(ImageIO.read(new ByteArrayInputStream(imageBytes)));
        } catch (IOException e) {
            throw new OcrException("导出图片失败", e);
        }
    }
 
    @Override
    public GenericObjectPool<Predictor<Image, DetectedObjects>> getPool() {
        return detPredictorPool;
    }
 
    @Override
    public void close() throws Exception {
        try {
            if (detPredictorPool != null) {
                detPredictorPool.close();
            }
        } catch (Exception e) {
            log.warn("关闭 predictorPool 失败", e);
        }
        try {
            if (detectionModel != null) {
                detectionModel.close();
            }
        } catch (Exception e) {
            log.warn("关闭 model 失败", e);
        }
    }
}