src/main/java/com/ruoyi/production/service/impl/SalesLedgerSchedulingServiceImpl.java
@@ -33,6 +33,7 @@
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.Arrays;
@@ -57,6 +58,8 @@
    @Override
    public IPage<SalesLedgerSchedulingDto> listPage(Page page, SalesLedgerSchedulingDto salesLedgerSchedulingDto) {
        salesLedgerSchedulingDto.setProductionUserId(SecurityUtils.getLoginUser().getUser().getUserId());
        salesLedgerSchedulingDto.setProductionUserName(SecurityUtils.getLoginUser().getUser().getNickName());
        IPage<SalesLedgerSchedulingDto> list = salesLedgerSchedulingMapper.listPage(page, salesLedgerSchedulingDto);
        if(list.getTotal() == 0){
            return list;
@@ -145,52 +148,60 @@
                i++;
                continue;
            }
            // 获取空余炒机
            String[] split = productionDispatchAddDto.getSpeculativeTradingName().split(",");
            if(split != null && split.length == 0){
            SysUser sysUser1 = sysUserMapper.selectUserById(productionDispatchAddDto.getProductionUserId() == null ? loginUser.getUser().getUserId() : productionDispatchAddDto.getSchedulingUserId());
            if(sysUser1 == null){
                i++;
                continue;
            }
            List<SpeculativeTradingInfo> speculativeTradingInfos = speculativeTradingInfoMapper.selectList(new LambdaQueryWrapper<SpeculativeTradingInfo>()
                    .in(SpeculativeTradingInfo::getName, Arrays.asList(split))
                    .orderByAsc(SpeculativeTradingInfo::getSort));
            if(CollectionUtils.isEmpty(speculativeTradingInfos)){
                i++;
                continue;
            }
            AtomicReference<String> name = new AtomicReference<>("");  //需要绑定的炒机
            //通过规格型号和排产数量计算本次生产产量
            String[] split1 = productionDispatchAddDto.getSpecificationModel().split("\\*");
            if(split1.length != 2){
                i++;
                continue;
            }
            // 本次生产产量
            BigDecimal productionNum = new BigDecimal(split1[0])
                    .multiply(new BigDecimal(split1[1]).multiply(productionDispatchAddDto.getSchedulingNum()));
            // 多个炒机情况
            if(speculativeTradingInfos.size() > 1){
                for (SpeculativeTradingInfo speculativeTradingInfo : speculativeTradingInfos) {
                    // 获取该炒机正在排产量
                    BigDecimal schedulingNumBySpeculativeTradingName = getSchedulingNumBySpeculativeTradingName(speculativeTradingInfo.getName());
                    // 如果该炒机总量(单位kg需要乘1000) - 正在排产量 >=本次生产产量就分配此炒机
                    if(speculativeTradingInfo.getWorkLoad().multiply(new BigDecimal(1000)).subtract(schedulingNumBySpeculativeTradingName).compareTo(productionNum) >= 0){
                        name.set(speculativeTradingInfo.getName());
                        break;
                    }
                }
            }else{
                // 单个炒机情况
                name.set(speculativeTradingInfos.get(0).getName());
            }
            if(name.get().isEmpty()){
                i++;
                continue;
            }
//            // 获取空余炒机
//            String[] split = productionDispatchAddDto.getSpeculativeTradingName().split(",");
//            if(split != null && split.length == 0){
//                i++;
//                continue;
//            }
//            List<SpeculativeTradingInfo> speculativeTradingInfos = speculativeTradingInfoMapper.selectList(new LambdaQueryWrapper<SpeculativeTradingInfo>()
//                    .in(SpeculativeTradingInfo::getName, Arrays.asList(split))
//                    .orderByAsc(SpeculativeTradingInfo::getSort));
//            if(CollectionUtils.isEmpty(speculativeTradingInfos)){
//                i++;
//                continue;
//            }
//            AtomicReference<String> name = new AtomicReference<>("");  //需要绑定的炒机
//            //通过规格型号和排产数量计算本次生产产量
//            String[] split1 = productionDispatchAddDto.getSpecificationModel().split("\\*");
//            if(split1.length != 2){
//                i++;
//                continue;
//            }
//            // 本次生产产量
//            BigDecimal productionNum = new BigDecimal(split1[0])
//                    .multiply(new BigDecimal(split1[1]).multiply(productionDispatchAddDto.getSchedulingNum()));
//            // 多个炒机情况
//            if(speculativeTradingInfos.size() > 1){
//                for (SpeculativeTradingInfo speculativeTradingInfo : speculativeTradingInfos) {
//                    // 获取该炒机正在排产量
//                    BigDecimal schedulingNumBySpeculativeTradingName = getSchedulingNumBySpeculativeTradingName(speculativeTradingInfo.getName());
//                    // 如果该炒机总量(单位kg需要乘1000) - 正在排产量 >=本次生产产量就分配此炒机
//                    if(speculativeTradingInfo.getWorkLoad().multiply(new BigDecimal(1000)).subtract(schedulingNumBySpeculativeTradingName).compareTo(productionNum) >= 0){
//                        name.set(speculativeTradingInfo.getName());
//                        break;
//                    }
//                }
//            }else{
//                // 单个炒机情况
//                name.set(speculativeTradingInfos.get(0).getName());
//            }
//            if(name.get().isEmpty()){
//                i++;
//                continue;
//            }
            SalesLedgerScheduling salesLedgerScheduling = SalesLedgerScheduling.builder()
                    .salesLedgerId(productionDispatchAddDto.getSalesLedgerId())
                    .salesLedgerProductId(productionDispatchAddDto.getSalesLedgerProductId())
                    .speculativeTradingName(name.get())
//                    .speculativeTradingName(name.get())
                    .productionUserId(sysUser1.getUserId())
                    .productionUserName(sysUser1.getNickName())
                    .productionLineId(productionDispatchAddDto.getLineId())
                    .schedulingUserId(sysUser.getUserId())
                    .schedulingUserName(sysUser.getNickName())
                    .schedulingNum(productionDispatchAddDto.getSchedulingNum())
@@ -281,6 +292,8 @@
    @Override
    public IPage<SalesLedgerSchedulingProcessDto> listPageProcess(Page page, SalesLedgerSchedulingProcessDto salesLedgerSchedulingDto) {
        Long userId = SecurityUtils.getLoginUser().getUserId();
        salesLedgerSchedulingDto.setProductionUserId(userId);
        IPage<SalesLedgerSchedulingProcessDto> list = salesLedgerSchedulingMapper.listPageProcess(page, salesLedgerSchedulingDto);
//        Set<Long> collect = list.getRecords().stream().map(SalesLedgerSchedulingProcessDto::getId).collect(Collectors.toSet());
//        if(CollectionUtils.isEmpty(collect)) return list;
@@ -338,6 +351,8 @@
            SalesLedgerWork.SalesLedgerWorkBuilder salesLedgerWorkBuilder = SalesLedgerWork.builder()
                    .salesLedgerSchedulingId(salesLedgerScheduling.getId())
                    .salesLedgerId(salesLedgerScheduling.getSalesLedgerId())
                    .productionUserId(salesLedgerScheduling.getProductionUserId())
                    .productionUserName(salesLedgerScheduling.getProductionUserName())
                    .remark(processSchedulingDto.getRemark())
                    .type(processSchedulingDto.getType())
                    .loss(processSchedulingDto.getLoss())