文件名从 src/InspectionWorker.worker.js 修改 |
| | |
| | | // 澶氱嚎绋嬮噷闈㈤渶瑕佷繚瀛樼殑鏁版嵁 |
| | | import Big from "big.js"; |
| | | |
| | | let code = ""; |
| | | // 琛ㄦ牸鏁版嵁锛堟覆鏌擄級 |
| | | let tableList = null; |
| | |
| | | console.log("error", error); |
| | | } |
| | | } |
| | | |
| | | /* |
| | | * big.js v5.2.2 |
| | | * A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic. |
| | | * Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com> |
| | | * https://github.com/MikeMcl/big.js/LICENCE |
| | | */ |
| | | (function (GLOBAL) { |
| | | "use strict"; |
| | | var Big, |
| | | /************************************** EDITABLE DEFAULTS *****************************************/ |
| | | |
| | | // The default values below must be integers within the stated ranges. |
| | | |
| | | /* |
| | | * The maximum number of decimal places (DP) of the results of operations involving division: |
| | | * div and sqrt, and pow with negative exponents. |
| | | */ |
| | | DP = 20, // 0 to MAX_DP |
| | | /* |
| | | * The rounding mode (RM) used when rounding to the above decimal places. |
| | | * |
| | | * 0 Towards zero (i.e. truncate, no rounding). (ROUND_DOWN) |
| | | * 1 To nearest neighbour. If equidistant, round up. (ROUND_HALF_UP) |
| | | * 2 To nearest neighbour. If equidistant, to even. (ROUND_HALF_EVEN) |
| | | * 3 Away from zero. (ROUND_UP) |
| | | */ |
| | | RM = 1, // 0, 1, 2 or 3 |
| | | // The maximum value of DP and Big.DP. |
| | | MAX_DP = 1e6, // 0 to 1000000 |
| | | // The maximum magnitude of the exponent argument to the pow method. |
| | | MAX_POWER = 1e6, // 1 to 1000000 |
| | | /* |
| | | * The negative exponent (NE) at and beneath which toString returns exponential notation. |
| | | * (JavaScript numbers: -7) |
| | | * -1000000 is the minimum recommended exponent value of a Big. |
| | | */ |
| | | NE = -7, // 0 to -1000000 |
| | | /* |
| | | * The positive exponent (PE) at and above which toString returns exponential notation. |
| | | * (JavaScript numbers: 21) |
| | | * 1000000 is the maximum recommended exponent value of a Big. |
| | | * (This limit is not enforced or checked.) |
| | | */ |
| | | PE = 21, // 0 to 1000000 |
| | | /**************************************************************************************************/ |
| | | |
| | | // Error messages. |
| | | NAME = "[big.js] ", |
| | | INVALID = NAME + "Invalid ", |
| | | INVALID_DP = INVALID + "decimal places", |
| | | INVALID_RM = INVALID + "rounding mode", |
| | | DIV_BY_ZERO = NAME + "Division by zero", |
| | | // The shared prototype object. |
| | | P = {}, |
| | | UNDEFINED = void 0, |
| | | NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i; |
| | | |
| | | /* |
| | | * Create and return a Big constructor. |
| | | * |
| | | */ |
| | | function _Big_() { |
| | | /* |
| | | * The Big constructor and exported function. |
| | | * Create and return a new instance of a Big number object. |
| | | * |
| | | * n {number|string|Big} A numeric value. |
| | | */ |
| | | function Big(n) { |
| | | var x = this; |
| | | |
| | | // Enable constructor usage without new. |
| | | if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n); |
| | | |
| | | // Duplicate. |
| | | if (n instanceof Big) { |
| | | x.s = n.s; |
| | | x.e = n.e; |
| | | x.c = n.c.slice(); |
| | | } else { |
| | | parse(x, n); |
| | | } |
| | | |
| | | /* |
| | | * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which |
| | | * points to Object. |
| | | */ |
| | | x.constructor = Big; |
| | | } |
| | | |
| | | Big.prototype = P; |
| | | Big.DP = DP; |
| | | Big.RM = RM; |
| | | Big.NE = NE; |
| | | Big.PE = PE; |
| | | Big.version = "5.2.2"; |
| | | |
| | | return Big; |
| | | } |
| | | |
| | | /* |
| | | * Parse the number or string value passed to a Big constructor. |
| | | * |
| | | * x {Big} A Big number instance. |
| | | * n {number|string} A numeric value. |
| | | */ |
| | | function parse(x, n) { |
| | | var e, i, nl; |
| | | |
| | | // Minus zero? |
| | | if (n === 0 && 1 / n < 0) n = "-0"; |
| | | else if (!NUMERIC.test((n += ""))) throw Error(INVALID + "number"); |
| | | |
| | | // Determine sign. |
| | | x.s = n.charAt(0) == "-" ? ((n = n.slice(1)), -1) : 1; |
| | | |
| | | // Decimal point? |
| | | if ((e = n.indexOf(".")) > -1) n = n.replace(".", ""); |
| | | |
| | | // Exponential form? |
| | | if ((i = n.search(/e/i)) > 0) { |
| | | // Determine exponent. |
| | | if (e < 0) e = i; |
| | | e += +n.slice(i + 1); |
| | | n = n.substring(0, i); |
| | | } else if (e < 0) { |
| | | // Integer. |
| | | e = n.length; |
| | | } |
| | | |
| | | nl = n.length; |
| | | |
| | | // Determine leading zeros. |
| | | for (i = 0; i < nl && n.charAt(i) == "0"; ) ++i; |
| | | |
| | | if (i == nl) { |
| | | // Zero. |
| | | x.c = [(x.e = 0)]; |
| | | } else { |
| | | // Determine trailing zeros. |
| | | for (; nl > 0 && n.charAt(--nl) == "0"; ); |
| | | x.e = e - i - 1; |
| | | x.c = []; |
| | | |
| | | // Convert string to array of digits without leading/trailing zeros. |
| | | for (e = 0; i <= nl; ) x.c[e++] = +n.charAt(i++); |
| | | } |
| | | |
| | | return x; |
| | | } |
| | | |
| | | /* |
| | | * Round Big x to a maximum of dp decimal places using rounding mode rm. |
| | | * Called by stringify, P.div, P.round and P.sqrt. |
| | | * |
| | | * x {Big} The Big to round. |
| | | * dp {number} Integer, 0 to MAX_DP inclusive. |
| | | * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP) |
| | | * [more] {boolean} Whether the result of division was truncated. |
| | | */ |
| | | function round(x, dp, rm, more) { |
| | | var xc = x.c, |
| | | i = x.e + dp + 1; |
| | | |
| | | if (i < xc.length) { |
| | | if (rm === 1) { |
| | | // xc[i] is the digit after the digit that may be rounded up. |
| | | more = xc[i] >= 5; |
| | | } else if (rm === 2) { |
| | | more = |
| | | xc[i] > 5 || |
| | | (xc[i] == 5 && |
| | | (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1)); |
| | | } else if (rm === 3) { |
| | | more = more || !!xc[0]; |
| | | } else { |
| | | more = false; |
| | | if (rm !== 0) throw Error(INVALID_RM); |
| | | } |
| | | |
| | | if (i < 1) { |
| | | xc.length = 1; |
| | | |
| | | if (more) { |
| | | // 1, 0.1, 0.01, 0.001, 0.0001 etc. |
| | | x.e = -dp; |
| | | xc[0] = 1; |
| | | } else { |
| | | // Zero. |
| | | xc[0] = x.e = 0; |
| | | } |
| | | } else { |
| | | // Remove any digits after the required decimal places. |
| | | xc.length = i--; |
| | | |
| | | // Round up? |
| | | if (more) { |
| | | // Rounding up may mean the previous digit has to be rounded up. |
| | | for (; ++xc[i] > 9; ) { |
| | | xc[i] = 0; |
| | | if (!i--) { |
| | | ++x.e; |
| | | xc.unshift(1); |
| | | } |
| | | } |
| | | } |
| | | |
| | | // Remove trailing zeros. |
| | | for (i = xc.length; !xc[--i]; ) xc.pop(); |
| | | } |
| | | } else if (rm < 0 || rm > 3 || rm !== ~~rm) { |
| | | throw Error(INVALID_RM); |
| | | } |
| | | |
| | | return x; |
| | | } |
| | | |
| | | /* |
| | | * Return a string representing the value of Big x in normal or exponential notation. |
| | | * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf. |
| | | * |
| | | * x {Big} |
| | | * id? {number} Caller id. |
| | | * 1 toExponential |
| | | * 2 toFixed |
| | | * 3 toPrecision |
| | | * 4 valueOf |
| | | * n? {number|undefined} Caller's argument. |
| | | * k? {number|undefined} |
| | | */ |
| | | function stringify(x, id, n, k) { |
| | | var e, |
| | | s, |
| | | Big = x.constructor, |
| | | z = !x.c[0]; |
| | | |
| | | if (n !== UNDEFINED) { |
| | | if (n !== ~~n || n < (id == 3) || n > MAX_DP) { |
| | | throw Error(id == 3 ? INVALID + "precision" : INVALID_DP); |
| | | } |
| | | |
| | | x = new Big(x); |
| | | |
| | | // The index of the digit that may be rounded up. |
| | | n = k - x.e; |
| | | |
| | | // Round? |
| | | if (x.c.length > ++k) round(x, n, Big.RM); |
| | | |
| | | // toFixed: recalculate k as x.e may have changed if value rounded up. |
| | | if (id == 2) k = x.e + n + 1; |
| | | |
| | | // Append zeros? |
| | | for (; x.c.length < k; ) x.c.push(0); |
| | | } |
| | | |
| | | e = x.e; |
| | | s = x.c.join(""); |
| | | n = s.length; |
| | | |
| | | // Exponential notation? |
| | | if ( |
| | | id != 2 && |
| | | (id == 1 || (id == 3 && k <= e) || e <= Big.NE || e >= Big.PE) |
| | | ) { |
| | | s = |
| | | s.charAt(0) + |
| | | (n > 1 ? "." + s.slice(1) : "") + |
| | | (e < 0 ? "e" : "e+") + |
| | | e; |
| | | |
| | | // Normal notation. |
| | | } else if (e < 0) { |
| | | for (; ++e; ) s = "0" + s; |
| | | s = "0." + s; |
| | | } else if (e > 0) { |
| | | if (++e > n) for (e -= n; e--; ) s += "0"; |
| | | else if (e < n) s = s.slice(0, e) + "." + s.slice(e); |
| | | } else if (n > 1) { |
| | | s = s.charAt(0) + "." + s.slice(1); |
| | | } |
| | | |
| | | return x.s < 0 && (!z || id == 4) ? "-" + s : s; |
| | | } |
| | | |
| | | // Prototype/instance methods |
| | | |
| | | /* |
| | | * Return a new Big whose value is the absolute value of this Big. |
| | | */ |
| | | P.abs = function () { |
| | | var x = new this.constructor(this); |
| | | x.s = 1; |
| | | return x; |
| | | }; |
| | | |
| | | /* |
| | | * Return 1 if the value of this Big is greater than the value of Big y, |
| | | * -1 if the value of this Big is less than the value of Big y, or |
| | | * 0 if they have the same value. |
| | | */ |
| | | P.cmp = function (y) { |
| | | var isneg, |
| | | x = this, |
| | | xc = x.c, |
| | | yc = (y = new x.constructor(y)).c, |
| | | i = x.s, |
| | | j = y.s, |
| | | k = x.e, |
| | | l = y.e; |
| | | |
| | | // Either zero? |
| | | if (!xc[0] || !yc[0]) return !xc[0] ? (!yc[0] ? 0 : -j) : i; |
| | | |
| | | // Signs differ? |
| | | if (i != j) return i; |
| | | |
| | | isneg = i < 0; |
| | | |
| | | // Compare exponents. |
| | | if (k != l) return (k > l) ^ isneg ? 1 : -1; |
| | | |
| | | j = (k = xc.length) < (l = yc.length) ? k : l; |
| | | |
| | | // Compare digit by digit. |
| | | for (i = -1; ++i < j; ) { |
| | | if (xc[i] != yc[i]) return (xc[i] > yc[i]) ^ isneg ? 1 : -1; |
| | | } |
| | | |
| | | // Compare lengths. |
| | | return k == l ? 0 : (k > l) ^ isneg ? 1 : -1; |
| | | }; |
| | | |
| | | /* |
| | | * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded, |
| | | * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM. |
| | | */ |
| | | P.div = function (y) { |
| | | var x = this, |
| | | Big = x.constructor, |
| | | a = x.c, // dividend |
| | | b = (y = new Big(y)).c, // divisor |
| | | k = x.s == y.s ? 1 : -1, |
| | | dp = Big.DP; |
| | | |
| | | if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP); |
| | | |
| | | // Divisor is zero? |
| | | if (!b[0]) throw Error(DIV_BY_ZERO); |
| | | |
| | | // Dividend is 0? Return +-0. |
| | | if (!a[0]) return new Big(k * 0); |
| | | |
| | | var bl, |
| | | bt, |
| | | n, |
| | | cmp, |
| | | ri, |
| | | bz = b.slice(), |
| | | ai = (bl = b.length), |
| | | al = a.length, |
| | | r = a.slice(0, bl), // remainder |
| | | rl = r.length, |
| | | q = y, // quotient |
| | | qc = (q.c = []), |
| | | qi = 0, |
| | | d = dp + (q.e = x.e - y.e) + 1; // number of digits of the result |
| | | |
| | | q.s = k; |
| | | k = d < 0 ? 0 : d; |
| | | |
| | | // Create version of divisor with leading zero. |
| | | bz.unshift(0); |
| | | |
| | | // CommunicateAdd zeros to make remainder as long as divisor. |
| | | for (; rl++ < bl; ) r.push(0); |
| | | |
| | | do { |
| | | // n is how many times the divisor goes into current remainder. |
| | | for (n = 0; n < 10; n++) { |
| | | // Compare divisor and remainder. |
| | | if (bl != (rl = r.length)) { |
| | | cmp = bl > rl ? 1 : -1; |
| | | } else { |
| | | for (ri = -1, cmp = 0; ++ri < bl; ) { |
| | | if (b[ri] != r[ri]) { |
| | | cmp = b[ri] > r[ri] ? 1 : -1; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // If divisor < remainder, subtract divisor from remainder. |
| | | if (cmp < 0) { |
| | | // Remainder can't be more than 1 digit longer than divisor. |
| | | // Equalise lengths using divisor with extra leading zero? |
| | | for (bt = rl == bl ? b : bz; rl; ) { |
| | | if (r[--rl] < bt[rl]) { |
| | | ri = rl; |
| | | for (; ri && !r[--ri]; ) r[ri] = 9; |
| | | --r[ri]; |
| | | r[rl] += 10; |
| | | } |
| | | r[rl] -= bt[rl]; |
| | | } |
| | | |
| | | for (; !r[0]; ) r.shift(); |
| | | } else { |
| | | break; |
| | | } |
| | | } |
| | | |
| | | // CommunicateAdd the digit n to the result array. |
| | | qc[qi++] = cmp ? n : ++n; |
| | | |
| | | // Update the remainder. |
| | | if (r[0] && cmp) r[rl] = a[ai] || 0; |
| | | else r = [a[ai]]; |
| | | } while ((ai++ < al || r[0] !== UNDEFINED) && k--); |
| | | |
| | | // Leading zero? Do not remove if result is simply zero (qi == 1). |
| | | if (!qc[0] && qi != 1) { |
| | | // There can't be more than one zero. |
| | | qc.shift(); |
| | | q.e--; |
| | | } |
| | | |
| | | // Round? |
| | | if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED); |
| | | |
| | | return q; |
| | | }; |
| | | |
| | | /* |
| | | * Return true if the value of this Big is equal to the value of Big y, otherwise return false. |
| | | */ |
| | | P.eq = function (y) { |
| | | return !this.cmp(y); |
| | | }; |
| | | |
| | | /* |
| | | * Return true if the value of this Big is greater than the value of Big y, otherwise return |
| | | * false. |
| | | */ |
| | | P.gt = function (y) { |
| | | return this.cmp(y) > 0; |
| | | }; |
| | | |
| | | /* |
| | | * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise |
| | | * return false. |
| | | */ |
| | | P.gte = function (y) { |
| | | return this.cmp(y) > -1; |
| | | }; |
| | | |
| | | /* |
| | | * Return true if the value of this Big is less than the value of Big y, otherwise return false. |
| | | */ |
| | | P.lt = function (y) { |
| | | return this.cmp(y) < 0; |
| | | }; |
| | | |
| | | /* |
| | | * Return true if the value of this Big is less than or equal to the value of Big y, otherwise |
| | | * return false. |
| | | */ |
| | | P.lte = function (y) { |
| | | return this.cmp(y) < 1; |
| | | }; |
| | | |
| | | /* |
| | | * Return a new Big whose value is the value of this Big minus the value of Big y. |
| | | */ |
| | | P.minus = P.sub = function (y) { |
| | | var i, |
| | | j, |
| | | t, |
| | | xlty, |
| | | x = this, |
| | | Big = x.constructor, |
| | | a = x.s, |
| | | b = (y = new Big(y)).s; |
| | | |
| | | // Signs differ? |
| | | if (a != b) { |
| | | y.s = -b; |
| | | return x.plus(y); |
| | | } |
| | | |
| | | var xc = x.c.slice(), |
| | | xe = x.e, |
| | | yc = y.c, |
| | | ye = y.e; |
| | | |
| | | // Either zero? |
| | | if (!xc[0] || !yc[0]) { |
| | | // y is non-zero? x is non-zero? Or both are zero. |
| | | return yc[0] ? ((y.s = -b), y) : new Big(xc[0] ? x : 0); |
| | | } |
| | | |
| | | // Determine which is the bigger number. Prepend zeros to equalise exponents. |
| | | if ((a = xe - ye)) { |
| | | if ((xlty = a < 0)) { |
| | | a = -a; |
| | | t = xc; |
| | | } else { |
| | | ye = xe; |
| | | t = yc; |
| | | } |
| | | |
| | | t.reverse(); |
| | | for (b = a; b--; ) t.push(0); |
| | | t.reverse(); |
| | | } else { |
| | | // Exponents equal. Check digit by digit. |
| | | j = ((xlty = xc.length < yc.length) ? xc : yc).length; |
| | | |
| | | for (a = b = 0; b < j; b++) { |
| | | if (xc[b] != yc[b]) { |
| | | xlty = xc[b] < yc[b]; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // x < y? Point xc to the array of the bigger number. |
| | | if (xlty) { |
| | | t = xc; |
| | | xc = yc; |
| | | yc = t; |
| | | y.s = -y.s; |
| | | } |
| | | |
| | | /* |
| | | * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only |
| | | * needs to start at yc.length. |
| | | */ |
| | | if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--; ) xc[i++] = 0; |
| | | |
| | | // Subtract yc from xc. |
| | | for (b = i; j > a; ) { |
| | | if (xc[--j] < yc[j]) { |
| | | for (i = j; i && !xc[--i]; ) xc[i] = 9; |
| | | --xc[i]; |
| | | xc[j] += 10; |
| | | } |
| | | |
| | | xc[j] -= yc[j]; |
| | | } |
| | | |
| | | // Remove trailing zeros. |
| | | for (; xc[--b] === 0; ) xc.pop(); |
| | | |
| | | // Remove leading zeros and adjust exponent accordingly. |
| | | for (; xc[0] === 0; ) { |
| | | xc.shift(); |
| | | --ye; |
| | | } |
| | | |
| | | if (!xc[0]) { |
| | | // n - n = +0 |
| | | y.s = 1; |
| | | |
| | | // Result must be zero. |
| | | xc = [(ye = 0)]; |
| | | } |
| | | |
| | | y.c = xc; |
| | | y.e = ye; |
| | | |
| | | return y; |
| | | }; |
| | | |
| | | /* |
| | | * Return a new Big whose value is the value of this Big modulo the value of Big y. |
| | | */ |
| | | P.mod = function (y) { |
| | | var ygtx, |
| | | x = this, |
| | | Big = x.constructor, |
| | | a = x.s, |
| | | b = (y = new Big(y)).s; |
| | | |
| | | if (!y.c[0]) throw Error(DIV_BY_ZERO); |
| | | |
| | | x.s = y.s = 1; |
| | | ygtx = y.cmp(x) == 1; |
| | | x.s = a; |
| | | y.s = b; |
| | | |
| | | if (ygtx) return new Big(x); |
| | | |
| | | a = Big.DP; |
| | | b = Big.RM; |
| | | Big.DP = Big.RM = 0; |
| | | x = x.div(y); |
| | | Big.DP = a; |
| | | Big.RM = b; |
| | | |
| | | return this.minus(x.times(y)); |
| | | }; |
| | | |
| | | /* |
| | | * Return a new Big whose value is the value of this Big plus the value of Big y. |
| | | */ |
| | | P.plus = P.add = function (y) { |
| | | var t, |
| | | x = this, |
| | | Big = x.constructor, |
| | | a = x.s, |
| | | b = (y = new Big(y)).s; |
| | | |
| | | // Signs differ? |
| | | if (a != b) { |
| | | y.s = -b; |
| | | return x.minus(y); |
| | | } |
| | | |
| | | var xe = x.e, |
| | | xc = x.c, |
| | | ye = y.e, |
| | | yc = y.c; |
| | | |
| | | // Either zero? y is non-zero? x is non-zero? Or both are zero. |
| | | if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0); |
| | | |
| | | xc = xc.slice(); |
| | | |
| | | // Prepend zeros to equalise exponents. |
| | | // Note: reverse faster than unshifts. |
| | | if ((a = xe - ye)) { |
| | | if (a > 0) { |
| | | ye = xe; |
| | | t = yc; |
| | | } else { |
| | | a = -a; |
| | | t = xc; |
| | | } |
| | | |
| | | t.reverse(); |
| | | for (; a--; ) t.push(0); |
| | | t.reverse(); |
| | | } |
| | | |
| | | // Point xc to the longer array. |
| | | if (xc.length - yc.length < 0) { |
| | | t = yc; |
| | | yc = xc; |
| | | xc = t; |
| | | } |
| | | |
| | | a = yc.length; |
| | | |
| | | // Only start adding at yc.length - 1 as the further digits of xc can be left as they are. |
| | | for (b = 0; a; xc[a] %= 10) b = ((xc[--a] = xc[a] + yc[a] + b) / 10) | 0; |
| | | |
| | | // No need to check for zero, as +x + +y != 0 && -x + -y != 0 |
| | | |
| | | if (b) { |
| | | xc.unshift(b); |
| | | ++ye; |
| | | } |
| | | |
| | | // Remove trailing zeros. |
| | | for (a = xc.length; xc[--a] === 0; ) xc.pop(); |
| | | |
| | | y.c = xc; |
| | | y.e = ye; |
| | | |
| | | return y; |
| | | }; |
| | | |
| | | /* |
| | | * Return a Big whose value is the value of this Big raised to the power n. |
| | | * If n is negative, round to a maximum of Big.DP decimal places using rounding |
| | | * mode Big.RM. |
| | | * |
| | | * n {number} Integer, -MAX_POWER to MAX_POWER inclusive. |
| | | */ |
| | | P.pow = function (n) { |
| | | var x = this, |
| | | one = new x.constructor(1), |
| | | y = one, |
| | | isneg = n < 0; |
| | | |
| | | if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) |
| | | throw Error(INVALID + "exponent"); |
| | | if (isneg) n = -n; |
| | | |
| | | for (;;) { |
| | | if (n & 1) y = y.times(x); |
| | | n >>= 1; |
| | | if (!n) break; |
| | | x = x.times(x); |
| | | } |
| | | |
| | | return isneg ? one.div(y) : y; |
| | | }; |
| | | |
| | | /* |
| | | * Return a new Big whose value is the value of this Big rounded using rounding mode rm |
| | | * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a |
| | | * multiple of 10**-dp. |
| | | * If dp is not specified, round to 0 decimal places. |
| | | * If rm is not specified, use Big.RM. |
| | | * |
| | | * dp? {number} Integer, -MAX_DP to MAX_DP inclusive. |
| | | * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP) |
| | | */ |
| | | P.round = function (dp, rm) { |
| | | var Big = this.constructor; |
| | | if (dp === UNDEFINED) dp = 0; |
| | | else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) |
| | | throw Error(INVALID_DP); |
| | | return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm); |
| | | }; |
| | | |
| | | /* |
| | | * Return a new Big whose value is the square root of the value of this Big, rounded, if |
| | | * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM. |
| | | */ |
| | | P.sqrt = function () { |
| | | var r, |
| | | c, |
| | | t, |
| | | x = this, |
| | | Big = x.constructor, |
| | | s = x.s, |
| | | e = x.e, |
| | | half = new Big(0.5); |
| | | |
| | | // Zero? |
| | | if (!x.c[0]) return new Big(x); |
| | | |
| | | // Negative? |
| | | if (s < 0) throw Error(NAME + "No square root"); |
| | | |
| | | // Estimate. |
| | | s = Math.sqrt(x + ""); |
| | | |
| | | // Math.sqrt underflow/overflow? |
| | | // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent. |
| | | if (s === 0 || s === 1 / 0) { |
| | | c = x.c.join(""); |
| | | if (!((c.length + e) & 1)) c += "0"; |
| | | s = Math.sqrt(c); |
| | | e = (((e + 1) / 2) | 0) - (e < 0 || e & 1); |
| | | r = new Big( |
| | | (s == 1 / 0 |
| | | ? "1e" |
| | | : (s = s.toExponential()).slice(0, s.indexOf("e") + 1)) + e |
| | | ); |
| | | } else { |
| | | r = new Big(s); |
| | | } |
| | | |
| | | e = r.e + (Big.DP += 4); |
| | | |
| | | // Newton-Raphson iteration. |
| | | do { |
| | | t = r; |
| | | r = half.times(t.plus(x.div(t))); |
| | | } while (t.c.slice(0, e).join("") !== r.c.slice(0, e).join("")); |
| | | |
| | | return round(r, (Big.DP -= 4), Big.RM); |
| | | }; |
| | | |
| | | /* |
| | | * Return a new Big whose value is the value of this Big times the value of Big y. |
| | | */ |
| | | P.times = P.mul = function (y) { |
| | | var c, |
| | | x = this, |
| | | Big = x.constructor, |
| | | xc = x.c, |
| | | yc = (y = new Big(y)).c, |
| | | a = xc.length, |
| | | b = yc.length, |
| | | i = x.e, |
| | | j = y.e; |
| | | |
| | | // Determine sign of result. |
| | | y.s = x.s == y.s ? 1 : -1; |
| | | |
| | | // Return signed 0 if either 0. |
| | | if (!xc[0] || !yc[0]) return new Big(y.s * 0); |
| | | |
| | | // Initialise exponent of result as x.e + y.e. |
| | | y.e = i + j; |
| | | |
| | | // If array xc has fewer digits than yc, swap xc and yc, and lengths. |
| | | if (a < b) { |
| | | c = xc; |
| | | xc = yc; |
| | | yc = c; |
| | | j = a; |
| | | a = b; |
| | | b = j; |
| | | } |
| | | |
| | | // Initialise coefficient array of result with zeros. |
| | | for (c = new Array((j = a + b)); j--; ) c[j] = 0; |
| | | |
| | | // Multiply. |
| | | |
| | | // i is initially xc.length. |
| | | for (i = b; i--; ) { |
| | | b = 0; |
| | | |
| | | // a is yc.length. |
| | | for (j = a + i; j > i; ) { |
| | | // Current sum of products at this digit position, plus carry. |
| | | b = c[j] + yc[i] * xc[j - i - 1] + b; |
| | | c[j--] = b % 10; |
| | | |
| | | // carry |
| | | b = (b / 10) | 0; |
| | | } |
| | | |
| | | c[j] = (c[j] + b) % 10; |
| | | } |
| | | |
| | | // Increment result exponent if there is a final carry, otherwise remove leading zero. |
| | | if (b) ++y.e; |
| | | else c.shift(); |
| | | |
| | | // Remove trailing zeros. |
| | | for (i = c.length; !c[--i]; ) c.pop(); |
| | | y.c = c; |
| | | |
| | | return y; |
| | | }; |
| | | |
| | | /* |
| | | * Return a string representing the value of this Big in exponential notation to dp fixed decimal |
| | | * places and rounded using Big.RM. |
| | | * |
| | | * dp? {number} Integer, 0 to MAX_DP inclusive. |
| | | */ |
| | | P.toExponential = function (dp) { |
| | | return stringify(this, 1, dp, dp); |
| | | }; |
| | | |
| | | /* |
| | | * Return a string representing the value of this Big in normal notation to dp fixed decimal |
| | | * places and rounded using Big.RM. |
| | | * |
| | | * dp? {number} Integer, 0 to MAX_DP inclusive. |
| | | * |
| | | * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'. |
| | | * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'. |
| | | */ |
| | | P.toFixed = function (dp) { |
| | | return stringify(this, 2, dp, this.e + dp); |
| | | }; |
| | | |
| | | /* |
| | | * Return a string representing the value of this Big rounded to sd significant digits using |
| | | * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent |
| | | * the integer part of the value in normal notation. |
| | | * |
| | | * sd {number} Integer, 1 to MAX_DP inclusive. |
| | | */ |
| | | P.toPrecision = function (sd) { |
| | | return stringify(this, 3, sd, sd - 1); |
| | | }; |
| | | |
| | | /* |
| | | * Return a string representing the value of this Big. |
| | | * Return exponential notation if this Big has a positive exponent equal to or greater than |
| | | * Big.PE, or a negative exponent equal to or less than Big.NE. |
| | | * Omit the sign for negative zero. |
| | | */ |
| | | P.toString = function () { |
| | | return stringify(this); |
| | | }; |
| | | |
| | | /* |
| | | * Return a string representing the value of this Big. |
| | | * Return exponential notation if this Big has a positive exponent equal to or greater than |
| | | * Big.PE, or a negative exponent equal to or less than Big.NE. |
| | | * Include the sign for negative zero. |
| | | */ |
| | | P.valueOf = P.toJSON = function () { |
| | | return stringify(this, 4); |
| | | }; |
| | | |
| | | // Export |
| | | |
| | | Big = _Big_(); |
| | | |
| | | Big["default"] = Big.Big = Big; |
| | | |
| | | //AMD. |
| | | if (typeof define === "function" && define.amd) { |
| | | define(function () { |
| | | return Big; |
| | | }); |
| | | |
| | | // Node and other CommonJS-like environments that support module.exports. |
| | | } else if (typeof module !== "undefined" && module.exports) { |
| | | module.exports = Big; |
| | | |
| | | //Browser. |
| | | } else { |
| | | GLOBAL.Big = Big; |
| | | } |
| | | })(this); |